
django-filer Documentation
Release 0.9.4

Stefan Foulis

June 09, 2014

Contents

1 Getting help 3

2 Contributing 5

3 Contents 7
3.1 Installation and Configuration . 7
3.2 Upgrading . 9
3.3 Usage . 11
3.4 Permissions . 12
3.5 Secure Downloads . 12
3.6 Settings . 14
3.7 Extending Django Filer . 16
3.8 Running tests . 20

i

ii

django-filer Documentation, Release 0.9.4

django-filer is a file management application for django. It handles uploading and organizing files and images
in contrib.admin.

Note: upgrading from 0.8.7? Checkout Upgrading.

Figure 1: Directory list view with clipboard. New uploads are added to the clipboard and can then be filed into folders.

Custom model fields are provided for use in 3rd party apps as a replacement for the default FileField from django.
Behind the scenes a ForeignKey to the File model is used.

Figure 2: Default admin widget for file fields

Contents 1

django-filer Documentation, Release 0.9.4

2 Contents

CHAPTER 1

Getting help

• google group: http://groups.google.com/group/django-filer

• IRC: #django-filer on freenode.net

3

http://groups.google.com/group/django-filer

django-filer Documentation, Release 0.9.4

4 Chapter 1. Getting help

CHAPTER 2

Contributing

The code is hosted on github at http://github.com/stefanfoulis/django-filer/ and is fully open source. We hope you
choose to help us on the project! More about how to contribute can be found on the wiki.

5

http://github.com/stefanfoulis/django-filer/
https://github.com/stefanfoulis/django-filer/wiki/Contributing
https://github.com/stefanfoulis/django-filer/wiki/

django-filer Documentation, Release 0.9.4

6 Chapter 2. Contributing

CHAPTER 3

Contents

3.1 Installation and Configuration

Note: upgrading from 0.8.7? Checkout Upgrading.

3.1.1 Getting the latest release

The easiest way to get django-filer is simply install it with pip:

$ pip install django-filer

If you are feeling adventurous you can get the latest sourcecode from github or add
http://stefanfoulis.github.com/django-filer/unstable_releases/ to find-links for the latest alpha and beta re-
leases.

3.1.2 Dependencies

• Django >=1.3.1,<1.5

• django-mptt >=0.5.1,<0.6

• easy_thumbnails >= 1.0

• django-polymorphic >=0.2

• PIL 1.1.7 (with JPEG and ZLIB support) I recommend using Pillow instead.

• django.contrib.staticfiles

Since the PIL package on pypi can be notoriously hard to install on some platforms it is not listed in the package
dependencies in setup.py and won’t be installed automatically. Please make sure you install PIL with JPEG and
ZLIB support installed. I recommend Pillow a better packaged fork of PIL).

3.1.3 Configuration

Add "filer" and related apps to your project’s INSTALLED_APPS setting and run manage.py syncdb (or
manage.py migrate if you’re using South).:

7

http://pypi.python.org/pypi/pip
https://github.com/stefanfoulis/django-filer/
http://stefanfoulis.github.com/django-filer/unstable_releases/
http://djangoproject.com
https://github.com/django-mptt/django-mptt/
https://github.com/SmileyChris/easy-thumbnails
https://github.com/bconstantin/django_polymorphic
http://www.pythonware.com/products/pil/
http://pypi.python.org/pypi/Pillow/
http://pypi.python.org/pypi/PIL/
http://www.pythonware.com/products/pil/
http://pypi.python.org/pypi/Pillow/
http://www.pythonware.com/products/pil/
http://south.aeracode.org/

django-filer Documentation, Release 0.9.4

INSTALLED_APPS = [
...
’filer’,
’easy_thumbnails’,
...

]

Note that easy_thumbnails also has database tables and needs a syncdb or migrate.

Static media

In order to operate properly, django-filer needs some js and css files. They are located in the static/filer
directory in the filer package. Use django.contrib.staticfiles (or django-staticfiles) to have them automatically
served.

subject location aware cropping

It is possible to define the important part of an image (the subject location) in the admin interface for django-filer
images. This is very useful when later resizing and cropping images with easy_thumbnails. The image can then be
cropped automatically in a way, that the important part of the image is always visible.

To enable automatic subject location aware cropping of images replace
easy_thumbnails.processors.scale_and_cropwith filer.thumbnail_processors.scale_and_crop_with_subject_location
in the THUMBNAIL_PROCESSORS setting:

THUMBNAIL_PROCESSORS = (
’easy_thumbnails.processors.colorspace’,
’easy_thumbnails.processors.autocrop’,
#’easy_thumbnails.processors.scale_and_crop’,
’filer.thumbnail_processors.scale_and_crop_with_subject_location’,
’easy_thumbnails.processors.filters’,

)

To crop an image and respect the subject location:

{% load thumbnail %}
{% thumbnail obj.img 200x300 crop upscale subject_location=obj.img.subject_location %}

permissions

Warning: File permissions are an experimental feature. The api may change at any time.

See Permissions section.

secure downloads

Warning: File download permissions are an experimental feature. The api may change at any time.

See Secure Downloads section.

8 Chapter 3. Contents

https://github.com/SmileyChris/easy-thumbnails
http://docs.djangoproject.com/en/1.3/howto/static-files/
http://pypi.python.org/pypi/django-staticfiles/

django-filer Documentation, Release 0.9.4

debugging and logging

While by default django-filer usually silently skips icon/thumbnail generation errors, two options are provided
to help when working with django-filer:

• FILER_DEBUG: Boolean, controls whether bubbling up any easy-thumbnails exception (typically if an
image file doesn’t exists); is False by default;

• FILER_ENABLE_LOGGING: Boolean, controls whether logging the above exceptions. It re-
quires proper django logging configuration for default logger or filer logger. Please see
https://docs.djangoproject.com/en/dev/topics/logging/ for further information about Django’s logging config-
uration.

3.2 Upgrading

3.2.1 from 0.9.1 to 0.9.2

From 0.9.2 File.name field is null=False.

Warning: Data migration in 0.9.2 changes existing null values to empty string.

3.2.2 from 0.8.7 to 0.9

0.9 introduces real separation of private and public files through multiple storage backends. Public files are placed in-
side MEDIA_ROOT, using Djangos default file storage. Private files are now placed in their own location. Unfortunatly
the default settings in django-filer 0.8.x made all new uploads “private”, but still placed them inside MEDIA_ROOT
in a subfolder called filer_private. In most cases these files are actually meant to be public, so they should be
moved.

Note: Quick and Dirty: set FILER_0_8_COMPATIBILITY_MODE=True. It will pick up the old style settings
and configure storage backends the way they were in 0.8. This setting is only meant to easy migration and is not
intended to be used long-term.

Manually (SQL)

faster for many large files

Fire up the sql-console and change is_public to True on all files in the filer_file ta-
ble (UPDATE filer_file SET is_public=1 WHERE is_public=0;). The files will still be in
MEDIA_ROOT/filer_private/, but serving them should already work. Then you can move the files into
filer_private in the filesystem and update the corresponding paths in the database.

Automatic (Django)

Have filer move all files between storages. This might take a while, since django will read each file into memory and
write it to the new location. Especially if you are using an external storage backend such as Amazon S3, this might not
be an option. Set FILER_0_8_COMPATIBILITY_MODE=True and make sure you can access public and private
files. Then run this snippet in the django shell:

3.2. Upgrading 9

https://docs.djangoproject.com/en/dev/topics/logging/

django-filer Documentation, Release 0.9.4

from filer.models import File
import sys
for f in File.objects.filter(is_public=False):

sys.stdout.write(u’moving %s to public storage... ’ % f.id)
f.is_public = True
f.save()
sys.stdout.write(u’done\n’)

After running the script you can delete the FILER_0_8_COMPATIBILITY_MODE setting. If you want to use secure
downloads see Secure Downloads.

3.2.3 from pre-0.9a3 develop to 0.9

In develop pre-0.9a3 file path was written in the database as relative path inside filer directory; since 0.9a3 this is no
longer the case so file must be migrate to the new paths. Same disclaimer as 0.8x migration applies: SQL migration is
much faster for large datasets.

Manually (SQL)

Use whatever tool to access you database console and insert the correct directory name at the start of the file field.
Example:

UPDATE filer_file SET file= ’filer_public/’ || file WHERE file LIKE ’20%’ AND is_public=True;
UPDATE filer_file SET file= ’filer_private/’ || file WHERE file LIKE ’20%’ AND is_public=False;

Then you will have to move by hand the files from the MEDIA_ROOT/filer directory to the new public and private
storage directories

Automatic (Django)

Make sure the console user can access/write public and private files. Please note that the “filer/” string below should
be modified if your files are not saved in MEDIA_ROOT/filer Then run this snippet in the django shell:

from filer.models import File
import sys
for f in File.objects.filter(is_public=True):

sys.stdout.write(u’moving %s to public storage... ’ % f.id)
f.is_public = False
f.file.name = "filer/%s" % f.file.name
f.save()
f.is_public = True
f.save()
sys.stdout.write(u’done\n’)

for f in File.objects.filter(is_public=False):
sys.stdout.write(u’moving %s to private storage... ’ % f.id)
f.is_public = True
f.file.name = "filer/%s" % f.file.name
f.save()
f.is_public = False
f.save()
sys.stdout.write(u’done\n’)

Double access modification is needed to enabled automatic file move.

10 Chapter 3. Contents

django-filer Documentation, Release 0.9.4

3.3 Usage

django-filer provides model fields to replace djangos own django.db.models.FileField and
django.db.models.ImageField. The django-filer versions provide the added benefit of being able to manage the
files independently of where they are actually used in your content. As such the same file can be used in multiple
places without re-uploading it multiple times and wasting bandwidth, time and storage.

It also comes with additional tools to detect file duplicates based on SHA1 checksums.

Note: behind the scenes this field is actually just a ForeignKey to the File model in django-filer. So you can
easily access the extra metadata like this:

company.disclaimer.sha1
company.disclaimer.size
company.logo.width
company.logo.height
company.logo.icons[’64’] # or {{ company.logo.icons.64 }} in a template

3.3.1 FilerFileField and FilerImageField

They are subclasses of django.db.models.ForeignKey, so the same rules apply. The only difference is, that there is no
need to declare what model we are referencing (it is always filer.models.File for the FilerFileField and
filer.models.Image for the FilerImageField).

Simple example models.py:

from django.db import models
from filer.fields.image import FilerImageField
from filer.fields.file import FilerFileField

class Company(models.Model):
name = models.CharField(max_length=255)
logo = FilerImageField(null=True, blank=True)
disclaimer = FilerFileField(null=True, blank=True)

multiple file fields on the same model:

from django.db import models
from filer.fields.image import FilerImageField

class Book(models.Model):
title = models.CharField(max_length=255)
cover = FilerImageField(related_name="book_covers")
back = FilerImageField(related_name="book_backs")

As with django.db.models.ForeignKey in general, you have to define a non-clashing related_name if there are
multiple ForeignKey s to the same model.

templates

django-filer plays well with easy_thumbnails . At the template level a FilerImageField can be used the
same as a regular django.db.models.ImageField:

{% load thumbnail %}
{% thumbnail company.logo 250x250 crop %}

3.3. Usage 11

http://docs.djangoproject.com/en/1.3/ref/models/fields/#django.db.models.FileField
http://docs.djangoproject.com/en/1.3/ref/models/fields/#django.db.models.ImageField
http://docs.djangoproject.com/en/1.3/ref/models/fields/#django.db.models.ForeignKey
http://docs.djangoproject.com/en/1.3/ref/models/fields/#django.db.models.ForeignKey
https://github.com/SmileyChris/easy-thumbnails
http://docs.djangoproject.com/en/1.3/ref/models/fields/#django.db.models.ImageField

django-filer Documentation, Release 0.9.4

admin

The default widget provides a popup file selector that also directly supports uploading new images.

• Clicking on the magnifying glass will display the file selction popup.

• The red X will de-select the currently selected file (usefull if the field can be null).

Warning: Don’t place a FilerFileField as the first field in admin. Django admin will try to set the focus to
the first field in the form. But since the form field of FilerFileField is hidden that will cause in a javascript
error.

3.4 Permissions

Warning: File download permissions are an experimental feature. The api may change at any time.

By default files can be uploaded and managed by all staff members based on the standard django model permissions.

Activating permission checking with the FILER_ENABLE_PERMISSIONS setting enables fine grained permissions
based on individual folders. Permissions can be set in the “Folder permissions” section in Django admin.

Note: These permissions only concern editing files and folders in Django admin. All the files are still world down-
loadable by anyone who guesses the url. For real permission checks on downloads see the Secure Downloads section.

3.5 Secure Downloads

Warning: Secure downloads are experimental and the API may change at any time.

Warning: Server Backends currently only work with files in the local filesystem.

Note: For the impatient:

• set FILER_ENABLE_PERMISSIONS to True

• include filer.server.urls in the root urls.py without a prefix

To be able to check permissions on the file downloads, a special view is used. The files are saved in a separate location
outside of MEDIA_ROOT to prevent accidental serving. By default this is a directory called smedia that is located in
the parent directory of MEDIA_ROOT. The smedia directory must NOT be served by the webserver directly, because
that would bypass the permission checks.

To hook up the view filer.server.urls needs to be included in the root urls.py:

12 Chapter 3. Contents

django-filer Documentation, Release 0.9.4

urlpatterns += patterns(’’,
url(r’^’, include(’filer.server.urls’)),

)

Files with restricted permissions need to be placed in a secure storage backend. Configure a secure storage backedn in
FILER_STORAGES or use the default.

Warning: The “Permissions disabled” checkbox in the file detail view in Django admin controls in which storage
backend the file is saved. In order for it to be protected, this field must not be checked.

For images the permissions also extend to all generated thumbnails.

By default files with permissions are served directly by the Django process (using the
filer.server.backends.default.DefaultServer backend). That is acceptable in a development
environment, but is very bad for performance and security in production.

The private file view will serve the permission-checked media files by delegating to one of its server backends. The
ones bundled with django-filer live in filer.server.backends and it is easy to create new ones.

The default is filer.server.backends.default.DefaultServer. It is suitable for development and
serves the file directly from django.

More suitiable for production are server backends that delegate the actual file serving to an upstream webserver.

3.5.1 NginxXAccelRedirectServer

location: filer.server.backends.nginx.NginxXAccelRedirectServer

nginx docs about this stuff: http://wiki.nginx.org/XSendfile

in settings.py:

FILER_SERVERS = {
’private’: {

’main’: {
’ENGINE’: ’filer.server.backends.nginx.NginxXAccelRedirectServer’,
’OPTIONS’: {

’location’: ’/path/to/smedia/filer’,
’nginx_location’: ’/nginx_filer_private’,

},
},
’thumbnails’: {

’ENGINE’: ’filer.server.backends.nginx.NginxXAccelRedirectServer’,
’OPTIONS’: {

’location’: ’/path/to/smedia/filer_thumbnails’,
’nginx_location’: ’/nginx_filer_private_thumbnails’,

},
},

},
}

nginx_location is the location directive where nginx “hides” permission-checked files from general access. A
fitting nginx configuration might look something like this:

location /nginx_filer_private/ {
internal;
alias /path/to/smedia/filer_private/;

}

3.5. Secure Downloads 13

http://djangoproject.com
http://wiki.nginx.org/XSendfile

django-filer Documentation, Release 0.9.4

location /nginx_filer_private_thumbnails/ {
internal;
alias /path/to/smedia/filer_private_thumbnails/;

}

Note: make sure you follow the example exactly. Missing trailing slashes and alias vs. root have subtle
differences that can make your config fail.

NginxXAccelRedirectServer will add the a X-Accel-Redirect header to the response instead
of actually loading and delivering the file itself. The value in the header will be something like
/nginx_filer_private/2011/03/04/myfile.pdf. Nginx picks this up and does the actual file delivery
while the django backend is free to do other stuff again.

3.5.2 ApacheXSendfileServer

location: filer.server.backends.xsendfile.ApacheXSendfileServer

Warning: I have not tested this myself. Any feedback and example configurations are very welcome :-)

Once you have mod_xsendfile installed on your apache server you can configure the settings.

in settings.py:

FILER_SERVERS = {
’private’: {

’main’: {
’ENGINE’: ’filer.server.backends.xsendfile.ApacheXSendfileServer’,
},

’thumbnails’: {
’ENGINE’: ’filer.server.backends.xsendfile.ApacheXSendfileServer’,
},

},
}

in your apache configuration:

XSendFilePath /path/to/smedia/

XSendFilePath is a whitelist for directories where apache will serve files from.

3.6 Settings

3.6.1 FILER_ENABLE_PERMISSIONS

Activate the or not the Permission check on the files and folders before displaying them in the admin. When set to
False it gives all the authorization to staff members based on standard Django model permissions.

Defaults to False

3.6.2 FILER_IS_PUBLIC_DEFAULT

Should newly uploaded files have permission checking disabled (be public) by default.

14 Chapter 3. Contents

django-filer Documentation, Release 0.9.4

Defaults to False (new files have permission checking disable, are public)

3.6.3 FILER_STATICMEDIA_PREFIX

The prefix for static media where filer will look for bundled javascript, css and images.

Defaults to <STATIC_URL>/filer/ if STATIC_URL is defined. Otherwise falls back to
<MEDIA_URL>/filer/. It is the URL where the static/filer/ directory should be served.

3.6.4 FILER_STORAGES

A dictionary to configure storage backends used for file storage.

e.g:

FILER_STORAGES = {
’public’: {

’main’: {
’ENGINE’: ’filer.storage.PublicFileSystemStorage’,
’OPTIONS’: {

’location’: ’/path/to/media/filer’,
’base_url’: ’/smedia/filer/’,

},
’UPLOAD_TO’: ’filer.utils.generate_filename.by_date’,

},
’thumbnails’: {

’ENGINE’: ’filer.storage.PublicFileSystemStorage’,
’OPTIONS’: {

’location’: ’/path/to/media/filer_thumbnails’,
’base_url’: ’/smedia/filer_thumbnails/’,

},
},

},
’private’: {

’main’: {
’ENGINE’: ’filer.storage.PrivateFileSystemStorage’,
’OPTIONS’: {

’location’: ’/path/to/smedia/filer’,
’base_url’: ’/smedia/filer/’,

},
’UPLOAD_TO’: ’filer.utils.generate_filename.by_date’,

},
’thumbnails’: {

’ENGINE’: ’filer.storage.PrivateFileSystemStorage’,
’OPTIONS’: {

’location’: ’/path/to/smedia/filer_thumbnails’,
’base_url’: ’/smedia/filer_thumbnails/’,

},
},

},
}

Defaults to FileSystemStorage in <MEDIA_ROOT>/filer_public/ and
<MEDIA_ROOT>/filer_public_thumbnails/ for public files and <MEDIA_ROOT>/../smedia/filer_private/
and <MEDIA_ROOT>/../smedia/filer_private_thumbnails/ for private files. Public storage uses
DEFAULT_FILE_STORAGE as default storage backend.

3.6. Settings 15

django-filer Documentation, Release 0.9.4

UPLOAD_TO is the function to generate the path relative to the storage root. The default generates a date based
path like 2011/05/03/filename.jpg. This will be applied with the current date whenever a file is uploaded
or moved between public (without permission checks) and private (with permission checks) storages. Defaults to
’filer.utils.generate_filename.by_date’

3.6.5 FILER_SERVERS

Warning: Server Backends are experimental and the API may change at any time.

A dictionary to configure server backends to serve files with permissions.

e.g:

DEFAULT_FILER_SERVERS = {
’private’: {

’main’: {
’ENGINE’: ’filer.server.backends.default.DefaultServer’,

},
’thumbnails’: {

’ENGINE’: ’filer.server.backends.default.DefaultServer’,
}

}
}

Defaults to using the DefaultServer (doh)! This will serve the files with the django app.

3.6.6 FILER_PAGINATE_BY

The number of items (Folders, Files) that should be displayed per page in admin.

Defaults to 20

3.6.7 FILER_SUBJECT_LOCATION_IMAGE_DEBUG

Draws a red circle around to point in the image that was used to do the subject location aware image cropping.

Defaults to False

3.6.8 FILER_ALLOW_REGULAR_USERS_TO_ADD_ROOT_FOLDERS

Regular users are not allowed to create new folders at the root level, only subfolders of already existing folders, unless
this setting is set to True.

Defaults to False

3.7 Extending Django Filer

Django Filer ships with support for image files, and generic files (everything that’s not an image).

So what if you wanted to add support for a particular kind of file thats’s not already included? It’s easy to extend it to
do this, without needing to touch the Filer’s code at all (and no-one wants to have to maintain fork if they can avoid
it).

16 Chapter 3. Contents

django-filer Documentation, Release 0.9.4

So for example, you might want to be able to manage video files. You could of course simply store and file them as
generic file types, but that might not be enough - perhaps your own application needs to know that certain files are in
fact video files, so that it can treat them appropriately (process them, allow only them to be selected in certain widgets,
and so on).

In this example we will create suport for video files.

3.7.1 The model

The very basics

In your own application, you need to create a Video model. This model has to inherit from
filer.models.filemodels.File.

import the File class to inherit from
from filer.models.filemodels import File

we’ll need to refer to filer settings
from filer import settings as filer_settings

class Video(File):
pass # for now...

When a file is uploaded, filer.admin.clipboardadmin.ClipboardAdmin.ajax_upload() loops over
the different classes in filer.settings.FILER_FILE_MODELS and calls its matches_file_type() to see
if the file matches a known filename extension.

When a match is found, the filer will create an instance of that class for the file.

So let’s add a matches_file_type() method to the Video model:

@classmethod
def matches_file_type(cls, iname, ifile, request):

the extensions we’ll recognise for this file type
filename_extensions = [’.dv’, ’.mov’, ’.mp4’, ’.avi’, ’.wmv’,]
ext = os.path.splitext(iname)[1].lower()
return ext in filename_extensions

Now you can upload files of those types into the Filer.

For each one you upload an instance of your Video class will be created.

Icons

At the moment, the files you upload will have the Filer’s generic file icon - not very appropriate or helpful for video.
What you need to do is add a suitable _icon attribute to the class.

The filer.models.filemodels.File class we’ve inherited from has an icons() property, from
filer.models.mixins.IconsMixin.

This checks for the _icon attribute; if it finds one, it uses it to build URLs for the icons in various different sizes. If
_icons is video, a typical result might be /static/filer/icons/video_48x48.png.

Of course, you can also create an icons() property specific to your new model. For example,
filer.models.imagemodels.Image does that, so that it can create thumbnail icons for each file rather than a
single icon for all of that type.

In our Video model the simple case will do:

3.7. Extending Django Filer 17

django-filer Documentation, Release 0.9.4

the icon it will use
_icon = "video"

And in fact, the Filer already has an icon that matches this - if there were not already a set of video icons in the Filer’s
static assets, we’d have to provide them - see filer/static/icons for examples.

3.7.2 The admin

Now we need to register our new model with the admin. Again, the very simplest case:

from django.contrib import admin
from filer.admin.fileadmin import FileAdmin
from models import Video

admin.site.register(Video, FileAdmin) # use the standard FileAdmin

... but of course if your model had particular fields of its own (as for example the Image model has a
subject_location field) you would create your own ModelAdmin class for it, along with a form, special widgets
and whatever else you needed.

3.7.3 Using your new file type

You’ve now done enough to be able to get hold of files of your new kind in the admin (wherever the admin uses a
FilerFileField) but to make it really useful we need to to a little more.

For example, it might be useful to have:

• its own field type to get hold of it in some other model

• a special form for the field

• a widget for selecting it in the admin

• ... and so on

How you use it will be up to you, but a fairly typical use case would be in a django CMS plugin, and that is the example
that will be followed here.

3.7.4 Create a custom field for your file type

from filer.fields.file import FilerFileField

class FilerVideoField(FilerFileField):
default_model_class = Video

Of course you could also create an admin widget and admin form, but it’s not necessary at this stage - the ones generic
files use will do just fine.

3.7.5 Create some other model that uses it

Here, it’s going to be a django CMS plugin:

18 Chapter 3. Contents

django-filer Documentation, Release 0.9.4

from cms.models import CMSPlugin

class VideoPluginEditor(CMSPlugin):
video = FilerVideoField()
you’d probably want some other fields in practice...

You’ll have to provide an admin class for your model; in this case, the admin will be provided as part of the django
CMS plugin architecture.

Note: If you are not already familiar with the django CMS plugin architecture, http://docs.django-
cms.org/en/latest/extending_cms/custom_plugins.html#overview will provide an explanation.

from cms.plugin_base import CMSPluginBase
from models import VideoPluginEditor

class VideoPluginPublisher(CMSPluginBase):
model = VideoPluginEditor
render_template = "video/video.html"
text_enabled = True
admin_preview = False

def icon_src(self, instance):
return "/static/plugin_icons/video.png"

def render(self, context, instance, placeholder):
context.update({

’video’:instance,
’placeholder’:placeholder,

})
return context

plugin_pool.register_plugin(VideoPluginPublisher)

... and now, assuming you have created a suitable video/video.html, you’ve got a working plugin that will make
use of your new Filer file type.

3.7.6 Other things you could add

Admin templating

filer/templates/templates/admin/filer/folder lists the individual items in each folder. It checks
item.file_type to determine how to display those items and what to display for them.

You might want to extend this, so that the list includes the apprpriate information for your new file type. In that case
you will need to override the template, and in the Video model:

declare the file_type for the list template
file_type = ’Video’

Note that if you do this, you will need to override the template - otherwise your items will fail to display in the folder
lists.

3.7. Extending Django Filer 19

http://docs.django-cms.org/en/latest/extending_cms/custom_plugins.html#overview
http://docs.django-cms.org/en/latest/extending_cms/custom_plugins.html#overview

django-filer Documentation, Release 0.9.4

3.8 Running tests

django-filer is continuously being tested on travis-ci.

The simplest way to run the testsuite locally is to checkout the sourcecode, make sure you have PIL installed and run:

python setup.py test

It is also possible to invoke the test script directly. Just make sure the test dependencies have been installed:

runtests.py

The recommended way to test locally is with tox. Once tox is installed, simply running the tox command inside the
package root. You don’t need to bother with any virtualenvs, it will be done for you. Tox will setup multiple virtual
environments with different python and django versions to test against:

run all tests in all default environments
tox
run testsuite with django-dev/python 2.7 and django-1.4/python 2.6
tox -e py27-django-dev,py26-django14
run a specific testcase in all environemnts
tox -- filer.FilerApiTests.test_create_folder_structure
run a test class in specific environments
tox -e py27-django-dev,py26-django14 -- filer.FilerApiTests

--verbosity=3 and --failfast are also supported.

To speed things up a bit use detox. detox runs each testsuite in a separate process in parallel.

20 Chapter 3. Contents

https://travis-ci.org/stefanfoulis/django-filer
http://tox.readthedocs.org/en/latest/
http://pypi.python.org/pypi/detox/

	Getting help
	Contributing
	Contents
	Installation and Configuration
	Upgrading
	Usage
	Permissions
	Secure Downloads
	Settings
	Extending Django Filer
	Running tests

